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Objectives

Design high capacity, high-power and low cost cathodes
for PHEVs and EVs

» Improve the design, composition and electrochemical
performance of Mn-based cathodes

» Explore new processing routes to prepare advanced
electrodes with new architectural designs

» Use atomic-scale modeling as a guide to identify,
design and understand the structural features and
electrochemical properties of cathode materials



Milestones (FY10-11)

Engineer, improve and evaluate the electrochemical properties and
surface stability of composite electrode structures with a high Mn
content — on-going

Evaluate autogenic processes for coating metal oxide cathode particles
with carbon and for fabricating stabilized surfaces with metal oxide
and/or phosphate layers — on-going

Model coatings and interfacial phenomena at the surface of LiMn,O,
electrodes — on-going

Establish collaborative interactions with EFRC — Center for Electrical
Energy Storage - Tailored Interfaces (Argonne-Northwestern University-
University of lllinois (Urbana-Champaign) — collaborations established.

e X-ray absorption studies on BATT materials at Argonne’s Advanced Photon
Source (APS) complement EFRC projects.



Approach

= Exploit the concept and optimize the performance of integrated
(‘composite’) electrodes structures, particularly
(1) ‘layered-layered’ xLi,MnO;e(1-x)LiMO, (M=Mn, Ni, Co)
(2) ‘layered-rock salt’ xLi,MnO;e(1-x)MO - NEW

= Design effective surface structures to protect the underlying metal
oxide particles from the electrolyte and to improve their rate capability
when charged (delithiated) at high potentials

= Explore alternative synthesis techniques to synthesize advanced
electrode materials and surface structures and architectures
(1) Autogenic reactions
(2) Sonication - NEW

= Use first principles modeling to aid the design of bulk and surface
cathode structures and to understand electrochemical phenomena
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‘Composite’ xLi,MnO,e(1-x)LiMO, Electrodes

Strategy: Embed inactive Li,MnO, component within LiMO, structure to
stabilize the electrode at high potentials (reduce oxygen activity at surface)
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Cycle Number

Recap of typical performance:

= 200-250 mAh/g at C/3 rate (50 °C)

= Lower capacity at RT

= Charging to high potential (>4.4 V) damages the electrode surface,
reducing the rate capability, and inducing phase transitions in bulk.



0.5Li,MnO,e0.5LiNi, ,,Co, ,sMn, 5,0, Electrodes

Previous approach:

= Use Li-Ni-PO, as a solid electrolyte
below 5.0 V to protect the electrode
RT | surface at high potentials (4.2<V<4.8)
1 Surface coating enhances cycling
stability (4.6 —2.0V, 0.1 mA/cm?)

= 200 mAh/g achieved at C/1 rate
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0.5Li,Mn0O,€0.5LiCo0, Electrodes
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= Li-Ni-PO, surface treatment improves rate capability and suppresses
the voltage decay - but not adequately
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Surface Treatment Using Aggressive Reactions
Li-Ni-PO-treated 0.5Li,Mn0O,#0.5LiNi, ,,Co, ,sMn, 5,0, (NMC)

1. Autogenic Reactions: Self-generating reactions that occur within an
enclosed vessel typically at high pressure and temperature
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= Proven technique for producing carbon coatings, e.g. C-TiO,

= 0.5Li,Mn0O;0.5LiNi, 4,Co, ,sMn, 5,0, reacted with LiH,PO, and
Ni-acetate tetrahydrate (1:1 ratio, 5 wt%) in autogenic reactor

= Ar atmosphere, 700 °C, 20 min (low pressure)



Surface Treatment Using Aggressive Reactions

Untreated NMC particles and electrochemistry
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Surface Treatment Using Aggressive Reactions
TiO,-coated 0.5Li,Mn0O,0.5LiNi, ,,Co, ,:Mn, 5,0, (NMC)

2. Sonication: Formation = growth = implosive collapse of bubbles, locally
increasing temperature and pressure. Can it be used to coat nanoparticles ?
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Stabilization of Composite Bulk Structures

Exploration of new ion-exchange approach to fabricate Li,MnO;-
stabilized composite electrode structures
lon-exchange reactions with Na precursors well known:
e Delmas, Bruce — Layered LiMnO, from NaMnO, (transforms to spinel)
e Ceder — Layered LiMn, :Ni, :O, from NaMn,:Ni, O,
* Johnson — ‘Layered-spinel’ from Na,Li Mng ;5Nij ,50,
e Non-aqueous medium used

Alternative strategy:

e Use Li,MnO;, as the precursor

e Effect M* ion-exchange reactions in an acidic environment, followed by a
heat-treatment step to form composite electrode structures.

e Versatile, simple and inexpensive approach — can target ‘layered-
layered’, ‘layered-spinel’ and new ‘layered-rocksalt’ compositions,

XLi,MnO,e(1-x)MO (e.g., M=Ni, Co)
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The Li,MnO; (Li[Li, ;Mn, ,]O,) Structure
MnOg octahedra

O Li* layers
(octahedral ) O
sites)

= M?2*-jon exchange into Li* sites of transition metal layers seems possible
= Extent of ion-exchange controls the structure/composition of the product

e .



XRD Patterns: Li,MnO3;_Ni Composite Structures
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= “Li,MnO;_Ni 450” indicative of ‘layered-rock salt’ (‘Li,MnO-NiO’) structure
= Structural formation likely to go through HI[Li, ;sMn,;]O, intermediate
= “Li,MnO5_Ni 850" indicative of ‘layered-layered’ composite structure
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Electrochemistry: ‘Li,MnO,_Ni’ Electrodes
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Earlier indications suggest that Li,MnO;_Ni electrodes with a stabilizing
MO component may provide improved discharge voltage profile stability
over conventional composite materials when activated at high potentials

Average potential of layered-layered “Li,MnO;_Ni 850” electrode lower
than that of layered-rocksalt “Li,MnO,_Ni 450”

Extent to which NiO domains convert to LiMn, Ni, O, is T dependent
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X-ray Absorption Spectroscopy: ‘Li,MnO;_Ni’
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= Ni-K XANES showing Ni predominantly in the 2+ state, in all compounds:
NiO (standard), Li,MnO,_Ni 450 and Li,MnO,_Ni 850 in (a)

= Magnitude of the Fourier transformed Ni K-edge EXAFS, showing
Ni-O, Ni-M and Ni-O-M correlations, the latter from local rocksalt-like
corner-shared configurations in (b)
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Electrochemistry: ‘Li,MnO,_Ti/Ni’ Electrodes
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= Break-in cycles required for Ti-substituted Li, , Ti, MnO;_Ni 450 electrode

= Similar, stable voltage profile observed to Li,MnO,_Ni 450 electrode
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Versatility of Approach

Stabilizing cations and anions for surface protection can be added to the
solution — one shot process, e.g., Li,MnO,_Ni-Li;PO,

Li,MnO; precursor project forms basis for FY2012 BATT cathode proposal

Wide scope and possibilities

Compare with earlier coating procedures (2-step sol gel precipitation of
Li-Ni-PO, on composite electrode structures)
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XAS Studies: Li-Ni-PO, coated Li,MnOseLiCoO,
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(d) NIK

= XAS data collected ex situ

at 4 points on charge-
discharge curve (a)

XANES data show Ni?* at
the start of charge and
end of discharge (b)
XANES data show
oxidation of Ni?* to Ni3*
during charge

FT data show that Ni%*
ions are incorporated in
the transition metal layers
during the coating process

= 550 °C coating is not present as LiNiPO,: Li;PO, or substituted derivative?
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Theory: Surface Structure of LiMn,O,

Influence on chemical and electrochemical properties

= Simulations of LiMn,O, surfaces, both pristine and Ni-doped
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= |Left: Surface ion coordination numbers as a function of surface
orientation, relative to the bulk.

= Right: Lower coordination numbers yield lower Mn oxidation states
= Most Mn ions near surface are trivalent, enhancing solubility
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Theory: Surface Structure of LiMn,O,

Influence on chemical and electrochemical properties

= Energy of Ni-ion substitution for Mn
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Future Work - FY2011/FY2012

Continue to exploit and optimize various composite electrode
structures (composition and performance) with the goal of
reaching/exceeding the energy and power goals required for 40-
mile PHEVs and EVs. Exploit new xLi,MnO,e(1-x)MO systems.

Focus on the stabilization of both surface and bulk structures.
Use complementary experimental and theoretical approaches to
improve the surface stability, rate capability and cycle life of high
capacity Mn-rich oxide electrodes at high potentials.

Further explore sonication to fabricate and evaluate stable
surface architectures.

Continue EFRC-related work and interact with energy storage
Centers.
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Summary

Efforts were continued to stabilize the surface and bulk properties of high-
capacity, composite electrode structures.

A new route to processing composite electrode structures using a Li,MnOj;
precursor and ion-exchange reactions was demonstrated. The process has the
potential for fabricating surface-protected electrodes in a single step.

A new family of ‘layered-rock salt’ xLi,MnO;e(1-x)MO electrode structures
(e.g., M=Mn, Ni, Co) that show potential for providing enhanced structural and
electrochemical stability was identified and evaluated.

Autogenic and sonication reactions were evaluated for fabricating surface-
stabilized electrode particles. Initial data showed that the latter technique, in
particular, has the potential for significantly impacting and advancing the surface
properties of metal oxide electrodes.

Simulation of Ni-substituted LiMn,0O, structures has provided valuable insight
into surface ion coordination and Mn oxidation states that impact solubility.
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